Separable free quadratic algebras over quadratic integers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Étale Lattices over Quadratic Integers

We construct lattices with quadratic structure over the integers in quadratic number fields having the property that the rank of the quadratic structure is constant and equal to the rank of the lattice in all reductions modulo maximal ideals. We characterize the case in which such lattices are free. The construction gives a representative of the genus of such lattices as an orthogonal sum of “s...

متن کامل

Minimizing quadratic functions with separable quadratic constraints

This article deals with minimizing quadratic functions with a special form of quadratic constraints that arise in 3D contact problems of linear elasticity with isotropic friction [Haslinger, J., Kučera, R. and Dostál, Z., 2004, An algorithm for the numerical realization of 3D contact problems with Coulomb friction. Journal of Computational and Applied Mathematics, 164/165, 387–408.]. The propos...

متن کامل

Splitting quaternion algebras over quadratic number fields

We propose an algorithm for finding zero divisors in quaternion algebras over quadratic number fields, or equivalently, solving homogeneous quadratic equations in three variables over Q( √ d) where d is a square-free integer. The algorithm is deterministic and runs in polynomial time if one is allowed to call oracles for factoring integers and polynomials over finite fields.

متن کامل

Projective planes over quadratic 2-dimensional algebras

The split version of the Freudenthal-Tits magic square stems from Lie theory and constructs a Lie algebra starting from two split composition algebras [5, 20, 21]. The geometries appearing in the second row are Severi varieties [24]. We provide an easy uniform axiomatization of these geometries and related ones, over an arbitrary field. In particular we investigate the entry A2 × A2 in the magi...

متن کامل

Extended gcd of quadratic integers

where θ = 1 + √ d 2 if d mod 4 = 1 and θ = √ d if d mod 4 = 2, 3. The purpose of this paper is to compute the extended gcd of to quadratic integers in ring Z[θ]. We assume throughout that Z[θ] is principal ideal ring, but not necessarily an euclidean ring. If [a, b+ cθ] is the module {ax+(b+ cθ)y, x, y ∈ Z}, it can be shown [3] that I is an ideal of Z[θ] if and only if I = [a, b+ cθ]; where a, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2004

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2004.07.010